NOVOS 3 RS485 Modbus

Room sensor, optional with CO2 | VOC | Temperature | Humidity

Datasheet

Subject to technical alteration Issue date: 03.06.2022 • A121

*with design cover (left), standard design w/o design cover (right)

» APPLICATION

The maintenance-free sensor creates the conditions for a pleasant indoor climate and well-being. Typical applications are schools, office buildings, hotels, cinemas or similar. The device is available with additional LED display (traffic light function) with color change function for displaying the measured values. The threshold values can be individually configured via the Thermokon NOVOSSapp.

»TYPES AVAILABLE

Room sensor - active RS485 Modbus

- NOVOS 3 Temp RS485 Modbus
- NOVOS 3 Temp_rH RS485 Modbus
- NOVOS 3 CO2 Temp RS485 Modbus
- NOVOS 3 CO2 Temp_rH RS485 Modbus
- NOVOS 3 VOC Temp RS485 Modbus
- NOVOS 3 VOC Temp_rH RS485 Modbus
- NOVOS 3 CO2 + VOC RS485 Modbus
- NOVOS 3 CO2 + VOC Temp RS485 Modbus
- NOVOS 3 CO2 + VOC Temp_rH RS485 Modbus

Devices with CO2 optional with TLF (RGB-LED indicating air quality (traffic light function 'TLF')

» SECURITY ADVICE - CAUTION

The installation and assembly of electrical equipment should only be performed by authorized personnel.

The product should only be used for the intended application. Unauthorised modifications are prohibited! The product must not be used in relation with any equipment that in case of a failure may threaten, directly or indirectly, human health or life or result in danger to human beings, animals or assets. Ensure all power is disconnected before installing. Do not connect to live/operating equipment.

Please comply with

- Local laws, health & safety regulations, technical standards and regulations
- Condition of the device at the time of installation, to ensure safe installation
- This data sheet and installation manual

page 2 / 8 Issue date: 03.06.2022

» PRODUCT TESTING AND CERTIFICATION

Declaration of conformity

The declaration of conformity of the products can be found on our website https://www.thermokon.de/

» NOTES ON DISPOSAL

As a component of a large-scale fixed installation, Thermokon products are intended to be used permanently as part of a building or a structure at a pre-defined and dedicated location, hence the Waste Electrical and Electronic Act (WEEE) is not applicable. However, most of the products may contain valuable materials that should be recycled and not disposed of as domestic waste. Please note the relevant regulations for local disposal.

» MOUNTING ADVISE ROOM SENSORS

The Accuracy of the room sensors are influenced by the technical specifications as well as the positioning and the installation type.

During Assembly:

- Seal mounting box (if present).
- Installation type, air draught, heat source, radiation heat or direct sunlight can affect the measurement.
- Bulding material specific properties of the installation place (brick-, concrete-, partition wall, cavity wall, ...) can affect the measurement. (e.q.: Concrete accepts room temperature variation slower than cavity walls)

Assembly not recommendet in...

- Air draught (e.g.: close to windows / doors / fans ...)
- Near heating sources,
- Direct sunlight
- Niches / between furniture / ...

» BUILD-UP OF SELF-HEATING BY ELECTRICAL DISSIPATIVE POWER

Sensors with electronic components always have a dissipative power, which affects the temperature measurement of the ambient air. The dissipation in active temperature sensors shows a linear increase with rising operating voltage. This dissipative power has to be considered when measuring temperature. In case of a fixed operating voltage $(\pm 0,2 \text{ V})$ this is normally done by adding or reducing a constant offset value.

Thermokon transducers can be operated with variable operating voltages. The transducers are set at the factory with a reference operating voltage of 24 V =.

At this voltage, the expected measuring error of the output signal will be the least. Other operating voltages, can cause a measurement deviation changing power loss of the sensor electronics.

A recalibration can be carried out directly on the unit or via a software variable (app or bus).

Remark: Occurring draught leads to a better carrying-off of dissipative power at the sensor. Thus temporally limited fluctuations might occur upon temperature measurement.

» APPLICATION NOTICE FOR HUMIDITY SENSORS

At regular environmental condition, it is recommended to calibrate the sensor annually to check the compliance with the accuracy required in the application. The following conditions can damage the sensor element or lead in long therm to loss of the specified accuracy:

- Mechanical stress
- Contamination (e.g. dust / fingerprints)
- Aggressive chemicals
- Ambient conditions (e.g. condensation on measuring element)

Do not touch the sensor elements!

Re-calibration or exchange of the sensor element are not subject of the general warranty.

Issue date: 03.06.2022 page 3 / 8

»INFORMATION ABOUT SELF-CALIBRATION FEATURE CO2

All gas sensors are subject to drift. The degree of drift is dependent on the use of components and product design. In addition, the following environmental conditions, among others, can accelerate/ favor the aging and wear of the sensors:

- Mechanical stress (also due to temperature fluctuation)
- Contamination (dust / fingerprints e.g.)
- Abrasive chemicals
- Environmental influences (high humidity / condensation on measuring element)

An internal self calibration function with dual channel technology compensates the caused drift. Thermokon sensors are for permanent use (e.g. hospitals).

»INFORMATION ABOUT INDOOR AIR QUALITY CO2

EN 13779 defines several classes for indoor air quality:

Category	CO ₂ content above the content	in outdoor air in ppm	Description
	Typical range	Standard value	
IDA1	<400 ppm	350 ppm	Good indoor air quality
IDA2	400 600 ppm	500 ppm	Standard indoor air quality
IDA3	6001.000 ppm	800 ppm	Moderate indoor air quality
IDA4	>1.000 ppm	1.200 ppm	Poor indoor air quality

» APPLICATION NOTICE FOR AIR QUALITY SENSORS VOC

Volatile organic compunds (VOC) are gaseous and vaporous substances of organic origin in the air. VOC-sensors monitor the significant part of humanly olfactory sensed air quality. (e.g. body odur | tobacco smoke | odur of materials, furniture, carpets, paint, adhesives, ...)

The VOC-Value is an application-specific indication for air quality and doesn't provide any information about individual components of VOC

A VOC sensor oxidises the organic molecules that collide with it, which results in changing the resistance of the semiconductor.

Any contact with the sensitive sensors must be avoided and will invalidate the warranty.

The VOC Sensor is factory calibrated and can be calibrated via NOVOSapp subsequently, if needed.

» NOTES ON DISPOSAL

As a component of a large-scale fixed installation, Thermokon products are intended to be used permanently as part of a building or a structure at a pre-defined and dedicated location, hence the Waste Electrical and Electronic Act (WEEE) is not applicable. However, most of the products may contain valuable materials that should be recycled and not disposed of as domestic waste. Please note the relevant regulations for local disposal.

page 4 / 8 Issue date: 03.06.2022

»TECHNICAL DATA

Measuring values (optional)	temperature humidity CO2 VOC
Network technology	RS485 Modbus, RTU, half-duplex, baud rate 9.600, 19.200, 38.400 or 57600, parity: none (2 stopbits), even or odd (1 stopbit)
Power supply	1535 V = (or 1929 V ~)* SELV
Power consumption	typ. 0,4 W (24 V =) 0,8 VA (24 V ~)
Inputs	1x input for floating contact
Enclosure	PC V0, pure white, design cover (optional)
Protection	IP20 according to DIN EN 60529
Cable entry	rear entry, breaking points bottom, drill mark top
Connection electrical	tool-free mountable spring terminal, max. 1,5 mm²
Ambient condition	-35+70 °C, max. 85% non-condensing, with CO2 or VOC sensor operating temperature range 0+50 °C
Mounting	surface mounted on flush-mounting box (\emptyset =60 mm) or to be mounted flat onto the surface using screws, base part can be mounted and wired separately
Notes	for configuration an optional programming dongle (Bluetooth) is available (refer to accessories)

» Temperature

Measuring range temp	-35+70 °C
Accuracy temperature	±0,5K (typ. at 21 °C)

» Humidity

Measuring range humidity (optional configurable)	relative humidty (default) 0100% rH	Enthalpy 085 KJ/kg	absolute humidity 050 080 g/m³,	dew point 0+50 -20+80 °C,
	configurable via Thermoko	on NOVOSapp or BUS		
Accuracy humidity	±2% between 1090% rH (typ. at 21 °C)			

>> CO2

Measuring range CO2	02000 ppm 05000 ppm (configurable via Thermokon NOVOSapp or BUS)
Accuracy CO2	±50 ppm +3 % of reading (typ. at 21 °C, 50% rH, 1015 hPa)
Calibration	self-calibration dual channel
Sensor	NDIR (non-dispersive, infrared)
Display (optional)	RGB-LED indicating air quality (traffic light function 'TLF')

» VOC

Measuring range VOC	0100 %
Calibration	self-calibration
Sensor	VOC sensor (heated metal oxide semiconductor)

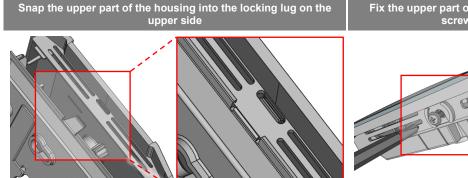
*Power supply

When several BUS devices are supplied by one 24 V AC voltage supply, it is to be ensured that all "positive" operating voltage input terminals (+) of the field devices are connected with each other and all "negative" operating voltage input terminals (-) (=reference potential) are connected together (in-phase connection of field devices).

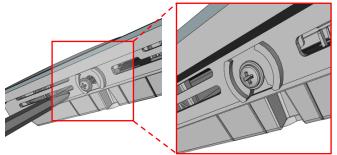
In case of reversed polarity at one field device, a supply voltage short-circuit would be caused by that device. The consequential short-circuit current flowing through this field my cause damage to it.

Therefore, pay attention to correct wiring.

Issue date: 03.06.2022 page 5 / 8

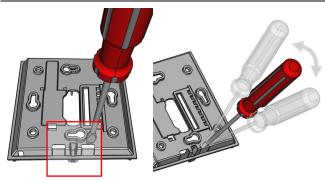

» MOUNTING ADVICES

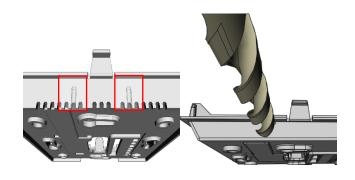
Please make sure that the device is de-energized if you want to install it!


The installation can be performed on the flat wall surface or on a flush-mounted box. A representative place should be selected. Sunshine and draft, e.g. in the installation tube should be avoided, so that the measurement result is not falsified. Seal the end of the installation tube.

- For wiring, the upper part of the device must be removed from the base plate. Base plate and upper part are detachably connected to each other by means of locking lugs.
- The mounting of the base plate on the flat wall surface is done with rawplugs and screws.
- Finally, the device is attached to the base plate and fixed with the screw.

Housing open / close

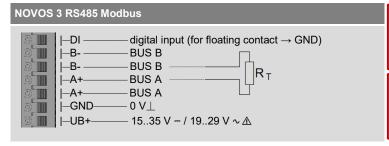

Fix the upper part of the housing on the underside with the screw included in the delivery.



Cable entry

There are predetermined breaking points for 2 optional cable entries on the underside of the base plate

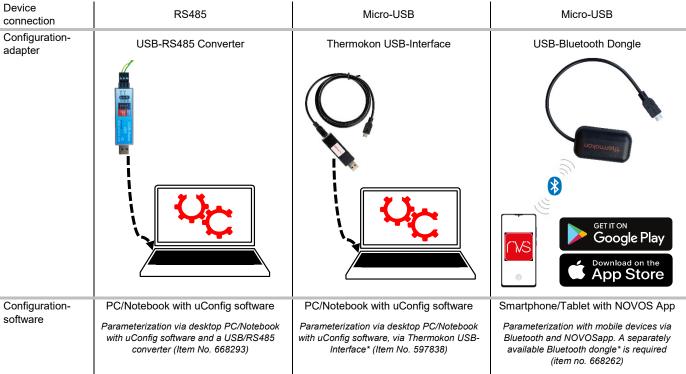
On the upper side of the base plate there are 2 grits as position for a drill hole max. \varnothing 6 mm



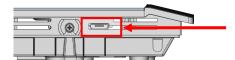
When using a drill, you should absolutely ensure that the base plate is firmly clamped. Before drilling, the pressure must be reduced and carefully drilled. A sudden break-through of the drill bit can be the result.

» CONNECTION PLAN

Room sensor - active RS485 Modbus


With alternating voltage, the correct polarity must be ensured!
Please note the technical data.

Don't forget the BUS termination (120 Ω) at the last device of the line!
(Not included in delivery)


page 6 / 8 Issue date: 03.06.2022

» CONFIGURATION

The configuration is performed in powered state. The following options are available for configuring the device:

*Commercially available Bluetooth dongles or USB to Micro-USB adapter cables are not compatible. You need a mobile device that supports at least Bluetooth version 4.1. The configuration app with the corresponding instructions can be downloaded from the Google Play Store or the Apple App Store.

Position of the micro USB port, see bottom of the device, for configuration with Bluetooth dongle or Micro-USB programming interface

A configuration during operation is additionally via BMS through RS485 connection possible.

»TLF – TRAFFIC LIGHT FUNCTION (OPTIONAL)

The traffic light function can be implemented with any available measured variable. Different colours can be assigned for up to 5 different measuring ranges.

Example: CO2 TLF

The LED visualizes the air quality value (Thresholds and colors optionally configurable via Thermokon NOVOSapp or BUS).

CO2 (Factory default)	Behavior of the LED
0750 ppm	LCD lights up in green
7511250 ppm	LCD lights up in yellow
12512000 ppm	LCD lights up in red

Issue date: 03.06.2022 page 7 / 8

» DIP-SWITCH-SETTINGS

The modbus address of the device is set in the range of 1 ... 63 (binary encoded) using a 6-pole DIP switch. With address 0 via DIP, an extended address range (64...247) is available via NOVOSapp.

Modbus-Adress - DIP 1..6 (binary coded)

Dip switch	1 = on	2 = on	3 = on	4 = on	5 = on	6 = on
Value	2º (1)	2 ¹ (2)	2 ² (4)	2 ³ (8)	24 (16)	2 ⁵ (32)

Factory default, adress 63

Baud rate - DIP 7 & 8

7	8	Baud rate	
off	off	9600	
on	off	19200	
off	on	38400	
on	on	57600	(factory default)

Parity / Stop bits - DIP 9 & 10

9	10	Parity
off	off	None – 2-Stopbits
on	off	Even – 1 Stopbit
off	on	Odd – 1 Stopbit
on	on	None – 1-Stopbit (factory default)

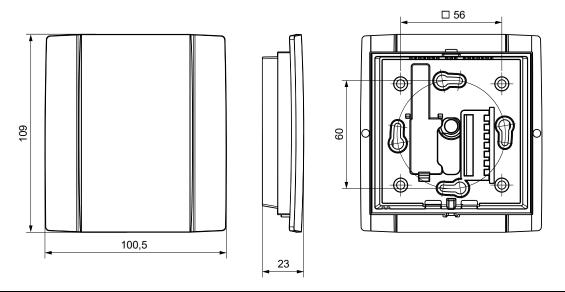
Adress	Access	Description		Scaling / Unit	
501	R	relative humidity	850 = 85,0 %rF	0.1	%rF
505	R	CO2		1.0	ppm
506	R	VOC		0.1	%
507	R	CO2 / VOC MIX			
514	R	Status digital input	open = 0		
			closed = 1		

Register 1100 = 1 (Unit SI)

. tog.oto o	. (0					
Adress	Access	Description		Scaling / Ur	nit	
500	R	Temperature	210 = 21,0 °C	SI	0.1	°C
502	R	Absolute humidity	1500 = 15,0 g/m³	SI	0.01	g/m³
503	R	Enthalpy	$550 = 55,0 \text{ kJ/m}^3$	SI	0.1	kJ/kg
504	R	Dew point	180 = 18.0 °C	SI	0.1	°C

Register 1100 = 2 (Unit Imperial)

g = ()							
Adress	Access	Description		Scaling / Unit	Scaling / Unit		
500	R	Temperature	700 = 70,0 °F	Imperial	0.1	°F	
502	R	Absolute humidity	$4200 = 4.2 \text{ gr/ft}^3$	Imperial	0.01	gr/ft³	
503	R	Enthalpy	240 = 24,0 BTU/lb	Imperial	0.1	BTU/lb	
504	R	Dew point	600 = 60,0 °F	Imperial	0.1	°F	


Modbus addresses:

NOVOS-RS485 Modbus Interface

A detailed description of the Modbus addresses can be found under the following link: \rightarrow **Download**

page 8 / 8 Issue date: 03.06.2022

» DIMENSIONS (MM)

» ACCESSORIES (OPTIONAL)

Rawlplugs and screws (2 pcs. each)

PSU-UP24 – flush mount power supply 24 V (AC Input: 100..240 V ~ | DC Output 24 V = 0,5 A)

Item No. 102209

Item No. 645737

Bluetooth dongle Thermokon USB-Interface Converter RS485 Modbus-USB incl. Driver CD Mounting bracket (surface mounted) white Mounting bracket (surface mounted) black Item No. 668262 Item No. 597838 Item No. 668293 Item No. 795050 Item No. 795074